2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8=50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

USN										
-----	--	--	--	--	--	--	--	--	--	--

Fifth Semester B.E. Degree Examination, June 2012

Formal Languages and Automata Theory

Time: 3 hrs. Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

- 1 a. Define:
 - i) Powers of alphabet
 - ii) Strings
 - iii) Languages.

(06 Marks)

- b. Write DFR for the following:
 - i) Set of all string not containing (110)
 - ii) Set of all strings with exactly three consecutive O's.

(06 Marks)

c. Convert the following NFA to DFA:

δ	0	1	
\rightarrow q ₀	q_0	q_0, q_1	
q_1	q_2	q_2	
*q2	ф	ф	

(08 Marks)

- 2 a. For a given E-NFA, compute the following:
 - i) Compute E-closure of each state.
 - ii) Give the set of all strings of length 3 or less accepted by the automation.
 - iii) Convert the automation to DFA.

(10 Marks)

δ	€	Q	b
→p	{r}	{q}	{p, r}
q	ф	{p}	ф
*r	{p, q}	{r}	{p}

- b. Prove that every language defined by RE is also defined by some finite automata.
- (06 Marks)

c. Explain about text search for address pattern.

- (04 Marks)
- 3 a. If L and M are regular languages prove that $L \cap M$ is also regular. (03 Marks)
 - b. Consider the homomorphism from the alphabet $\{0, 1, 2\}$ to $\{a, b\}$ defined by h(0) = ab, h(1) = b, h(2) = aa
 - i) What is h (2201)?
 - ii) If L is language 1*02* what is h(L)?
 - iii) If L is the language $(ab + baa)^*$ bab what is $h^{-1}(L)$.

(09 Marks)

c. Construct the product of DFA.

(08 Marks)

4 a. Design CFG for the following:

Set of all strings of O's and 1's, whose number of O's equal to number of 1's. (06 Marks)

- b. Consider the grammer $S \rightarrow s$ b s / a. This grammer is ambiguous: show that particular string aba ba has two
 - i) Parse trees
 - ii) Left most derivations
 - iii) Right most derivation.

(10 Marks)

c. Write any one application of CFG with example.

(04 Marks)

$\underline{PART - B}$

- 5 a. Design a PDA P to accept language L_{WW}. Show that how PDA accepts string 1111 with TD. (10 Marks)
 - Prove that for a PDA P there exist CFG such that L(G) = N(P).

(10 Marks)

6 a. Consider the grammer

 $S \rightarrow ASB/\in$

 $A \rightarrow aAS/a$

 $B \rightarrow sbs/bb$

- i) Eliminate useless symbols
- ii) Eliminate \in productions
- iii) Eliminate unit productions
- iv) Put the grammer into CNF.

(10 Marks)

- b. If L_1 and L_2 are CFL, then prove that family of context free languages are closed under union and concombination. (10 Marks)
- 7 a. What is Turing machine and multi tape Turing machine? Show that languages accepted by these machines are same. (10 Marks)
 - b. Design Turing machine to accept the language consisting of all palindromes of O's and 1's.

 (10 Marks)
- **8** Write short notes on:
 - a. Recursive languages
 - b. Post's correspondence problems
 - c. Universal Turing machine
 - d. Language that is not recursively enumerable.

(20 Marks)

* * * * *